2D Collision Problems

Name:
Date: \qquad

Elastic Collisions:

Include a well drawn diagram of the before and after collision situation.

1. A 4.0 kg ball is rolling at $15 \mathrm{~cm} / \mathrm{s}$ directly towards a stationary 2.0 kg ball. The collision is elastic and glancing causing the 4.0 kg ball to move at $10 \mathrm{~cm} / \mathrm{s}$ at an angle of 30°. Determine the speed and direction of the second ball. [16.2 cm/s [-38.3 $\left.{ }^{\circ}\right]$]
2. A 2.0 kg ball is rolling at $3 \mathrm{~cm} / \mathrm{s}$ directly towards a stationary 2.0 kg ball. The collision is elastic and glancing causing the first ball to move at $2.3 \mathrm{~cm} / \mathrm{s}$ at an angle of 40.5°. Determine the speed and direction of the second ball.
3. A 2.0 kg ball is rolling at $5 \mathrm{~cm} / \mathrm{s}$ towards a second ball of mass 4.0 kg moving towards the first at $2 \mathrm{~cm} / \mathrm{s}$. The two balls collide elastically in a glancing collision. The 2.0 kg ball moves away at 70° and speed of $4 \mathrm{~cm} / \mathrm{s}$. Determine the speed and direction of the second ball.
4. A 2.0 kg ball is rolling at $20 \mathrm{~cm} / \mathrm{s}$ towards a second ball of mass 4.0 kg . The collision is elastic and glancing causing the first ball to move at an angle of 32° up and the other to move off at an angle of 67° down. What are the final velocities of the two balls? Use the method of your choice. $\left[\mathrm{v}_{2 \mathrm{f}}=5.4 \mathrm{~cm} / \mathrm{s}, \mathrm{v}_{1 \mathrm{f}}=18.6 \mathrm{~m} / \mathrm{s}\right]$
5. A bomb initially at rest on a smooth, horizontal surface is exploded into three pieces. Two pieces fly off horizontally, a 2.0 kg piece at $20 \mathrm{~m} / \mathrm{s}$ at an angle of 30° up. A 3.0 kg piece at 12 m / s making an angle of 30° down. And finally, the third piece flies off horizontally at $30 \mathrm{~m} / \mathrm{s}$.
a) Determine the direction of motion of the third piece.
b) What is its mass? [2.2 kg]

Inelastic Collisions:

6. A 2000 kg car travelling east slides into an icy intersection at $22 \mathrm{~m} / \mathrm{s}$. It collides with a 1000 kg car moving at $10 \mathrm{~m} / \mathrm{s}$ south. If they become coupled together in the collision, what is their velocity immediately after impact? [$15 \mathrm{~m} / \mathrm{s}\left[\mathrm{E} 13^{\circ} \mathrm{S}\right.$]]
7. A 15000 kg transport truck moving south at $25 \mathrm{~m} / \mathrm{s}$ collides inelastically with a smaller car of mass 1000 kg moving eastward. The two objects are coupled and move together after the collision at $23.6 \mathrm{~m} / \mathrm{s}$ [$\left.\mathrm{S} 6.73^{\circ} \mathrm{E}\right]$. What was the eastward speed of the car before the collision? [$44.2 \mathrm{~m} / \mathrm{s}$ [East]]
8. Two ice skaters undergo a collision, after which their arms are intertwined and they have a common velocity moving $0.85 \mathrm{~m} / \mathrm{s}$ [$27^{\circ} \mathrm{S}$ of E]. Before the collision, one skater of mass 71 kg had a velocity of $2.3 \mathrm{~m} / \mathrm{s}$ moving [$12^{\circ} \mathrm{N}$ of E], while the other skater had a velocity of 1.9 m / s moving [$52^{\circ} \mathrm{S}$ of W]. What is the mass of the second skater? [55 kg]
