Binomial Distribution - Warm-up

Name: \qquad Date: \qquad

Chris is working at a job where is required to repeat a very specific bead weld many times in a day. His supervisor inspects all of his work and either accepts or rejects the piece. After many week is was calculated that his welding failure rate is 30%.
a) Calculate the probability distribution for 5 of his welds. You can set up the equations and then use the online application to get the values. Also sketch the distribution. [https://bit.ly/2H8whQP]

\boldsymbol{x}	$\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$ (equation)	$\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x})$ (numerical value)	Percentage
$\mathbf{0}$			
$\mathbf{1}$			
2			
3			
4			
5			

Probability Distribution

b) What is the probability of exactly 4 welds being accepted?
c) Calculate the probability that more than 3 welds are accepted.
d) Calculate the probability that fewer than 3 welds are accepted.
e) Calculate the average (expected) number of accepted welds. Draw a thick vertical line on the graph at this point. What do you notice?
f) If Chris welds 500 pieces in one week calculate the probability that at least 2 are rejected.
g) Describe how the coefficient in the equation relates to the tree diagram that can be generated for a success/failure situation of independent trials.

