Distances in Space

Name: \qquad Date: \qquad

Conversions:

1 Astronomical Unit (A.U.) $=150,000,000 \mathrm{~km}$
1 light year $(l y)=9,500,000,000,000 \mathrm{~km}$

Distances to Planets

Determine the average distance of each planet in our solar system from the Sun.

Planet	Distance to Sun in km	Distance to Sun in A.U.
Mercury	$57,000,000 \mathrm{~km}$	
Venus	$108,000,000 \mathrm{~km}$	
Earth	$150,000,000 \mathrm{~km}$	
Mars	$228,000,000 \mathrm{~km}$	
Jupiter	$779,000,000 \mathrm{~km}$	
Saturn	$1,430,000,000 \mathrm{~km}$	19.2 A.U.
Uranus	$4,500,000,000 \mathrm{~km}$	
Neptune		39.5 A.U.
Pluto		

Distances to Other Stars

Calculate the average distance of the following stars to planet Earth.

Planet	Distance in km	Distance in Light Years (ly)
Proxima Centauri	$40,113,000,000,000 \mathrm{~km}$	
Antares	$5,862,810,000,000,000 \mathrm{~km}$	
Arcturus		36.7 ly
Polaris		433 ly

Measuring Angles in the Night Sky

Because of this, astronomers measure the distance between celestial objects based on the angle they make with an observational point on Earth. Known as angular distances or angular separation, distances are expressed in terms of degrees (${ }^{\circ}$), arc minutes ('), and arc seconds (").

While angular separation primarily describes the apparent distance between celestial objects, as seen from Earth, it can also be used to suggest their actual distance from one another.

