Dynamics Assessment

 /25Name: \qquad Date: \qquad MARCH 27, 2020 \qquad

- Show all of your work for full marks. Include a FBD, governing equations, etc.

1. [5 marks] Consider the situation before. An elaborate experiment was set up to determine the mass of a loonie. Through careful measurement it was found that the acceleration of the pulley system below was found to be $5.29 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. The mass of the dime was measured to be 2.09 g . Calculate the mass of the loonie.
[assume no air resistance, the string are massless, and the pulley is frictionless]

2. [5 marks] Three masses are hanging by small threads attaching them. Calculate the tension in the middle thread. The system is not accelerating.

3. [5 marks] A store clerk pulls three carts connected with two horizontal cords to move products from the storage room to the display shelves. The masses of the loaded carts are: $m_{1}=15.0 \mathrm{~kg}$; $m_{2}=13.2 \mathrm{~kg}$, and $\mathrm{m}_{3}=16.1 \mathrm{~kg}$. Friction is negligible. A third cord pulls on cart 1 and is at an angle of 210 above the horizontal. It has a tension of 35.3 N . Determine.
a) the acceleration of the carts
b) the tension the middle cord (between 1 and 2)

4. [5+ marks] Two blocks are connected to a frictionless, massless pulley. The coefficient of friction between block X and the ramp is 0.12. $m_{x}=5.12 \mathrm{~kg}$ and $\mathrm{m}_{\mathrm{y}}=4.22$. Calculate the tension in the rope.

5. [5 marks] Three blocks of masses $m_{1}=26 \mathrm{~kg}, \mathrm{~m}_{2}=38 \mathrm{~kg}$ and $m_{3}=41 \mathrm{~kg}$ are connected by two strings over two pulleys. Calculate the coefficient of friction on the table (between block 2 and the table) if the acceleration of the system is $0.80 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ CW.

