Energy & Momentum – Inelastic Collision Problems

Name:	Date:	
the bottom. WI	kg cart rolls down a 5m high hill. It inelastically collides what is the combined speed of the two carts after the colli ronment and include a well labelled diagram.	ision? Assume a
[M.] 3	$V=0$ 20 kg M_1+M_2	EV.F=Ver=VF
Migh = MI U2	M, Vii + M2Uzi = M, U, F + A	
	= (M,+M2)	
V=J2gh	VE = M, Vii+ A	$\frac{1_{2}v_{2}i}{M_{2}} = \frac{M_{1}\sqrt{2qh} + M_{2}v_{2}i}{(M_{1}+M_{2})}$
@ bottom of hill so it	CM,+	M2) (M17M2)
is Vit		V= 7.1 M/5
downhill, collide	b identical railway cars shown below are initially at rest. These with the stationary car, and remains coupled to it. Togetof the hill. Ignoring friction, how far should they rise upper $M_1 = M_2 = M$ $V = \emptyset$	gether they continue
· · · · · · · · · · · · · · · · · · ·	$h_1 = 5.0m$ $h_2 = ?$	are the same
1 all of-	- Un lathing	= MVIF + MUZF
	MJ 2gh,	= (M + M) VF
	combined MJ2gh,	7 = 2 × V _F
h2= h.	3 / (J. C.)	= \frac{12gh_1}{2} @ bottom
4	(M+M)gh2=(M+M)VF = =11 of H	Speed
=1.25M	2 all of H	hós Ek

BALLISTIC PENDULUM - A classic physics experiment/problem

[Try problem first then watch this solution videol

wath this as well-

M= M2 (place) the block rises up.

3. [5 marks] The ballistic pendulum can be used to determine the initial velocity of a bullet. A bullet is fired at a block with an initial speed. It hits the block and sticks inside it. The combined mass is now moving at a new slower speed. Energy is conserved and

a) Determine the height reached by the block due to the impact by the bullet; initial velocity of the bullet is 500m/s: (m = 0.05kg and M = 10kg)

$$h = \frac{V_F^2}{2gR} = \frac{m_1^2 V_{11}^2}{(M_1 + M_2)^2 2gR}$$

$$h = 0.31 m$$

b) Determine the initial velocity of the bullet if the block and bullet combined rise to a

$$V_{ii} = \frac{(M_1 + M_2)}{M_1} V_F \quad \text{where } V_F = \sqrt{2gh}$$

$$V_{ii} = \frac{(M_1 + M_2)}{M_1} \sqrt{2gh}$$

$$V_{ii} = \frac{(M_1 + M_2)}{M_1} \sqrt{2gh}$$

$$V_{ii} = \frac{(0.05 + 10)}{M_1} \sqrt{2(4.9)(0.4)} \approx 563 \text{ M/s}$$

$$V_{ii} = \frac{(0.05 + 10)}{(0.05)} \sqrt{2(4.9)(0.4)} \approx 563 \text{ M/s}$$

$$V_{ii} = \frac{(0.05 + 10)}{M_1} \sqrt{2gh}$$

$$V_{ii} = \frac{(0.05 + 10)}{M_1} \sqrt{2gh}$$