

Name: \qquad Date: __March 30, 2020

List of Potentially Useful Equations:

$$
\begin{array}{lll}
v_{2}=v_{1}+a \Delta t & \Delta d=v_{1} \Delta t+\frac{1}{2} a \Delta t^{2} & v_{a v}=\frac{\Delta d}{\Delta t}=\left(\frac{v_{1}+v_{2}}{2}\right) \\
v_{2}^{2}=v_{1}^{2}+2 a \Delta d & \Delta d=v_{2} \Delta t-\frac{1}{2} a \Delta t^{2} &
\end{array}
$$

1. True or False: If the answer is false correct it so the statement is true. [5 marks (K)]

T F The slope of the line of best fit on a distance-time graph represents the acceleration of the object.

T F The slope of a speed-time graph is the velocity.
T F A ball is thrown straight up into the air; the acceleration of the ball when it reaches its maximum height is zero.

T F The acceleration of an object due to gravity is dependent on the mass of the object.

T F The velocity of an object increases or decreases when the acceleration is not zero.
2. [5 marks (A)] An astronaut drives a vehicle on Mars. Using the speedometer, the astronaut measures the change in speed between two Martian rocks 15 m apart. The speed at the first rock was $3.5 \mathrm{~m} / \mathrm{s}$ and at the second point it was triple this speed. Calculate the acceleration of the vehicle.
3. [5 marks (A)] A bat is chasing a bug (he is very hungry). He uses his sonar to search and find the bug. He moves $80 \mathrm{~m}[\mathrm{E}]$ then abruptly turns and flies $50 \mathrm{~m}[\mathrm{~S}]$ and then flies west for 150 m . The trip took 4.5 seconds; calculate the resultant velocity of the bat.
4. [2 marks (C)] Which has the greater acceleration: an object that increases its speed from $30 \mathrm{~km} / \mathrm{hr}$ to $60 \mathrm{~km} / \mathrm{hr}$ or an object that goes from $0 \mathrm{~km} / \mathrm{hr}$ to $30 \mathrm{~km} / \mathrm{hr}$ in the same time? Explain your answer clearly (use equations if it helps).
5. [5 marks (A)] Thomas is driving a Ferrari on the 407. He accelerates from rest uniformly at $4.5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 4.8 s , then moves with a uniform velocity for another 8 s . Calculate the total distance that he travels in that time.
6. [3 marks (C)] What is the value of the acceleration of all objects near the surface of the Earth? In a short paragraph explain why there is a misconception that the acceleration of an object is dependent on its mass.
7. [5 marks (TI)] A physics' student flies off to a distant planet and performs some experiments about the gravity there. The student notices there is very little atmosphere so very little air resistance. The student takes a 5 kg object and throws it upwards at $3 \mathrm{~m} / \mathrm{s}$ from the top of a 5.76 m tall cliff. The student astronaut measures that it takes 2.4 seconds to reach the ground. Calculate the acceleration of gravity on this planet. Include a diagram.
8. [5 marks (A)] A physics student fires a gun straight up in the air. The muzzle velocity (initial velocity) was found to be $436 \mathrm{~m} / \mathrm{s}$. Calculate how long it will take it to reach its highest point and what the maximum height of the bullet is.
9. [2 marks (TI)] The driver of a car is moving at a constant speed when suddenly a cat runs onto the road exactly 60 m in front of the car and freezes in fear. The driver takes 0.3 seconds to react and then slams on the brakes. The braking motion is graphed below on the velocity-time graph. How far from the cat does the driver stop?

