Kinetic Energy Warmup

Name: \qquad Date: \qquad

Write the kinetic energy equation in the space below.

1. A $1,030 \mathrm{~kg}$ car is moving at $24 \mathrm{~m} / \mathrm{s}$. Calculate the kinetic energy of the car.
2. A mouse is running at $0.75 \mathrm{~m} / \mathrm{s}$. It has a kinetic energy of 0.0140625 J . Calculate the mass of the mouse.
3. Calculate the speed of a 89 kg object that has a kinetic energy of $10,012.5 \mathrm{~J}$ (or 10.0125 KJ).
4. Super-Turtle is pushing a 15 kg toboggan at $5 \mathrm{~m} / \mathrm{s}$. He does $14,000 \mathrm{~J}$ of work on the toboggan to accelerate it to a new speed. Calculate this new speed.
5. A 40 kg toy train is moving along a smooth frictionless track. The train then has $92,000 \mathrm{~J}$ of work was done on it accelerating it to a speed of $70 \mathrm{~m} / \mathrm{s}$. Calculate the initial speed of the train.
