Distributive Law - Part 2

Today we will be "re-looking" at the distributive law. Last week, we used the distributive law with only numbers. Let's practice a few to remember...
a) $4(x+4)=$ \qquad b) $-2\left(x^{2}+5 x-3\right)=$ \qquad

Before we move on to the new type of distributive law question, let's look at something you know that will help you...

Key Idea:

Next we are going to look at what happens when you multiply a "monomial" (a term) with another monomial. We will then extend our understanding of the distributive law.

Multiply.
a) $4(5 \mathrm{~d})$
b) $(-3 b)(-5 b)$
c) $(-2 f)\left(4 f^{2}\right)$
d) $\mathbf{x}^{2}(9 x)$
\qquad first and the \qquad second.

Let's try a few more...
a) $-2\left(3 b^{2}\right)$
b) $(3 a)(4 a)$
c) $(4 b)\left(-5 b^{2}\right)$
d) $-3 x^{2}(2 x)$
e) $(3 a)^{2}$
f) $(4 b)^{3}$

Distributive Law - Part 2

The Distributive Law (Rainbowing) with Variables

If you multiply a monomial by a bracket, then multiply each term in the bracket by that monomial.

$2 x(x+3)=$

Let's do some together, expand the following using the distributive law:
a) $-3 x(5 x-7)$
b) $2 x\left(2 x^{2}+1\right)$
$=$ \qquad
$=$ \qquad
c) $-3 y^{2}(2 y-1)$
d) $-m(-2 m+4)$
$=$ \qquad
\qquad
e) $-2 b\left(-b^{2}+4 b-1\right)$
f) $5 a^{2}(-5 a+6)$
$=$ \qquad
\qquad

Higher level expressions require us to use the distributive law, multiply monomials, as well as collecting like terms! Let's try a couple.
g) $2 x\left(2 x^{2}+4 x-3\right)+5 x-2$
h) $2 x(3 x-5)-3 x(x-3)$
$=$ \qquad $=$ \qquad
$=$ \qquad $=$ \qquad

