
Today we will be "re-looking" at the distributive law. Last week, we used the distributive law with only numbers. Let's practice a few to remember...

a)
$$4(x + 4) =$$
______ b) $-2(x^2 + 5x - 3) =$ _____

Before we move on to the new type of distributive law question, let's look at something you know that will help you...

Key Idea:

Next we are going to look at what happens when you multiply a "monomial" (a term) with another monomial. We will then extend our understanding of the distributive law.

Multiply.

b)
$$(-3b)(-5b)$$
 c) $(-2f)(4f^2)$ d) $x^2(9x)$

d)
$$x^2$$
 (9x)

When multiplying two monomials, multiply the ______ first and the ______ second.

Let's try a few more...

a)
$$-2(3b^2)$$

d)
$$-3x^2(2x)$$

The Distributive Law (Rainbowing) with Variables

If you multiply a monomial by a bracket, then multiply each term in the bracket by that monomial.

 $2x\left(x+3\right) =$

Let's do some together, expand the following using the distributive law:

a)
$$-3x (5x - 7)$$

b)
$$2x (2x^2 + 1)$$

c)
$$-3y^2$$
 (2y -1)

$$d) - m (-2m + 4)$$

e)
$$-2b (-b^2 + 4b - 1)$$

f)
$$5a^2$$
 ($-5a + 6$)

Higher level expressions require us to use the distributive law, multiply monomials, as well as collecting like terms! Let's try a couple.

g)
$$2x (2x^2 + 4x - 3) + 5x - 2$$

h)
$$2x(3x-5)-3x(x-3)$$