Conservation of Linear Momentum

Name:

Date: _____

Purpose: To investigate and determine the law of *conservation of linear momentum*.

Procedure:

- 1. Go to the online air track simulator... or the short url: https://bit.ly/2SnV8Fs
- 2. Complete the charts and answer all questions fully. (stop the carts before they reach the edges. Mass 1 is the red cart and mass 2 is the green cart.

Useful Equations:

$$E_k = \frac{1}{2}mv^2 \qquad \qquad p = mv$$

Part A: Elastic Collision of Two Objects

1. Set Scenario to m1=m2 elastic (elasticity 100%).

Masses	V _i (before)	V _f (after)	p _i (before)	p_f (after)	E_{ki} (before)	E_{kf} (after)
m ₁ = 1.0 kg	1.00					
m ₂ = 1.0 kg	0					

Sample calculations:

Total Momentum Before: _____ Total Kinetic Energy Before: _____

Total Momentum After: _____ Total Kinetic Energy After: _____

Masses	V _i (before)	V _f (after)	p_i (before)	p_f (after)	E_{ki} (before)	E_{kf} (after)
m ₁ = 3.0 kg	1.00					
m ₂ = 1.0 kg	0					

Total Momentum Before: _____ Total Kinetic Energy Before: _____

Total Momentum After: _____ Total Kinetic Energy After: _____

Masses	V _i (before)	V _f (after)	p _i (before)	p_f (after)	E_{ki} (before)	E_{kf} (after)
m ₁ = 5.0 kg	1.00					
m ₂ = 1.0 kg	0					

Total Momentum Before: _____ Total Kinetic Energy Before: _____

Total Momentum After: _____ Total Kinetic Energy After: _____

Masses	V _i (before)	V _f (after)	p_i (before)	p_f (after)	E_{ki} (before)	E_{kf} (after)
m ₁ = 1.0 kg	1.00					
m ₂ = 3.0 kg	0					

Total Momentum Before: _____ Total Kinetic Energy Before: _____

Total Momentum After: ______ Total Kinetic Energy After: ______

Masses	V _i (before)	V_f (after)	p_i (before)	p_f (after)	E_{ki} (before)	E_{kf} (after)
m ₁ = 1.0 kg	1.00					
m ₂ = 5.0 kg	0					

Total Momentum Before: ______ Total Kinetic Energy Before: _____

Total Momentum After: ______ Total Kinetic Energy After: ______

Masses	V _i (before)	V _f (after)	p_i (before)	p_f (after)	E_{ki} (before)	E_{kf} (after)
m ₁ = 3.0 kg	1.00					
m ₂ = 1.0 kg	-0.50					

Total Momentum Before: _____ Total Kinetic Energy Before: _____

Total Momentum After: ______ Total Kinetic Energy After: ______

Conclusion:

2

Part B: Inelastic Collision of Two Objects

1. Set Scenario to m1=m2 inelastic (elasticity 0%).

Masses	V _i (before)	V _f (after)	p_i (before)	p_f (after)	E_{ki} (before)	E_{kf} (after)
m ₁ = 1.0 kg	1.00					
m ₂ = 1.0 kg	0					

Total Momentum Before: ______ Total Kinetic Energy Before: ______

Total Momentum After: _____ Total Kinetic Energy After: _____

Masses	V _i (before)	V _f (after)	p _i (before)	p_f (after)	<i>E_{ki}</i> (before)	E_{kf} (after)
m ₁ = 3.0 kg	1.00					
m_2 = 1.0 kg	0					

Total Momentum Before: ______ Total Kinetic Energy Before: _____

Total Momentum After: _____ Total Kinetic Energy After: _____

Masses	V _i (before)	V _f (after)	p _i (before)	p_f (after)	E_{ki} (before)	E_{kf} (after)
m ₁ = 1.0 kg	1.00					
m ₂ = 3.0 kg	0					

Total Momentum Before: _____ Total Kinetic Energy Before: _____

Total Momentum After: ______ Total Kinetic Energy After: ______

Masses	V _i (before)	V _f (after)	p _i (before)	p_f (after)	E_{ki} (before)	E_{kf} (after)
m ₁ = 3.0 kg	1.00					
m ₂ = 1.0 kg	-0.50					

Total Momentum Before: _____ Total Kinetic Energy Before: _____

Total Momentum After: _____ Total Kinetic Energy After: _____

Conclusion:

State the Law of Conservation of Linear Momentum (both elastic and inelastic):

Question(s):

1. Suggest where the energy might have gone during the inelastic collisions.

2. What two properties are *conserved* during an *elastic collision*?

3. What property *is conserved* and which is *not conserved* during an *inelastic collision*?

4. List three (3) mass and velocity combinations that result in both of the cars stopping after they collide (assume an *inelastic* collision). Try them using the applet.

a) b) c)

5. Give two (2) examples of "real life" collisions that are *elastic* (or very close to elastic)

6. Give two (2) examples of "real-life" collisions that are *inelastic* (or very close to inelastic)