Mass, Weight & Density

그 그 아이들이 얼마 얼마 가장하게 되었다. 나를 다 되었다.		
Name:	Date:	

Answer the following questions based on your reading and the notes you took from class.

$$W = \vec{F_g} = m\vec{g}$$

1 kg = 2.2 lbs

$$D = \frac{m}{V}$$

where g= the acceleration due to gravity

Thinking, Inquiry and Problem Solving

1. a) Write your mass in pounds: _______ 180 lbs

b) Convert this weight into kg.

$$180 \div 2.2 = 81.8 \text{ Kg}$$

c) Calculate your weight in Newton's on Earth?

d) Calculate your weight in Newtons on the moon where the acceleration of gravity is 1.67 m/s/s.

2. Which way would the balance tip? Explain. Use this example to explain the difference between mass and volume. Which object is denser? Explain how you know this.

- 3. The density of a steel object on Earth was found to be 0.564 kg/cm³. If you had a block of this object with dimensions 23 cm x 8 cm x 3 cm.
 - a) Calculate the **volume** of the block $(l \times w \times h)$ in cm³

$$V = (23)(8)(3) = \overline{552 \text{ cm}^3}$$

b) Using the volume calculate the mass since you know the density.

$$D = \frac{m}{V} \qquad m = DV \\ = (0.564)(552)$$

$$M = 311 \text{ Kg}$$

c) Determine the **weight** (in Newtons and pounds) of this object if it were taken via a spaceship to a new planet where the acceleration of gravity is only 5.4 m/s/s.

4. The weight of an object on the surface of Earth is 230 N. The density of the object is 2.34 kg/m³. Calculate the volume of the object in m³.

$$\frac{\text{cn Eanth}:}{\text{Fg} = M \text{ g}}$$
 $M = \frac{\text{Fg}}{9}$
 $M = \frac{230}{9.8}$
 $M = 23.4 \text{ kg}$
 $M = 23.4 \text{ kg}$
 $M = 13.4 \text{ kg}$
 $M = 13.4 \text{ kg}$