Momentum \& Energy Conservation Review - Select Problems

Name: \qquad Date: \qquad

1. Explain the difference between and inelastic and elastic collision. (Discuss in terms of momentum and kinetic energy)
2. Calculate the speed of an 1800 kg car with a momentum of $30,000 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$. [$17 \mathrm{~m} / \mathrm{s}$]
3. A 1500 kg car accelerates from rest at $4.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 6.0 s . Calculate the change in momentum and impulse acting on the car. [$3.6 \times 10^{4} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$]
4. A golf club exerts an average net force of 7200 N on a ball for the 0.0005 s they are in contact.
a) Calculate the impulse of the impact on the ball. [3.6 Ns]
b) If the ball has a mass of 45 g , what velocity will it have as it leaves the club face? [$80 \mathrm{~m} / \mathrm{s}$]
5. A puck ($\mathrm{m}=0.115 \mathrm{~kg}$) slides along frictionless ice at $16 \mathrm{~m} / \mathrm{s}$. It encounters a rough patch of ice that is 3 m in distance and slows down to a speed of $12 \mathrm{~m} / \mathrm{s}$. Calculate the change in momentum as well as the time it takes to travel through the rough patch and the average force acting on the puck.
6. A 45 kg boy is running at $4.0 \mathrm{~m} / \mathrm{s}$ when he jumps onto a new 15 kg sled, at rest on a frozen lake. Calculate the velocity of the boy and sled, if he hangs on. [$3.0 \mathrm{~m} / \mathrm{s}$]
7. A 2000 kg car travelling east at $24 \mathrm{~m} / \mathrm{s}$ enters an icy intersection and collides with a 3600 kg truck travelling south at $10 \mathrm{~m} / \mathrm{s}$. If they become coupled together in the collision, calculate their velocity immediately after impact. [11 m/s [E37 $\left.{ }^{\circ} \mathrm{S}\right]$]
8. A steel ball of mass 0.50 kg , moving with a velocity of $2.0 \mathrm{~m} / \mathrm{s}$, strikes a second ball of mass 0.30 kg , initially at rest. The collision is a glancing one, causing the first ball to be deflected at an angle of 30°, with a speed of $1.50 \mathrm{~m} / \mathrm{s}$. Determine the velocity of the second ball after the collision, giving both its speed and direction. [1.7 m/s [R47 $\left.{ }^{\circ} \mathrm{D}\right]$]
9. Two bumper cars are moving towards each other. Bumper car one is moving at $5 \mathrm{~m} / \mathrm{s}$ to the right and has a mass of 120 kg . Bumper car two is moving at $8 \mathrm{~m} / \mathrm{s}$ to the left and has a mass of 45 kg . Predict the final state then calculate the final speeds of both cars if the collision is completely elastic. Which car would you rather be in an explain why! [Solve using which ever method you wish] compare your prediction to the calculation. [$-2.1 \mathrm{~m} / \mathrm{s}$ and $10.9 \mathrm{~m} / \mathrm{s}$ for car 1 and 2 respectively]
