## Momentum \& Impulse - Evaluation

Name: $\qquad$ Date: $\qquad$ COVID-19 (2020) $\qquad$

## Knowledge \& Understanding

1. [ 1 mark ] A ghost has a mass of 2 kg (ghosts have mass?) and is moving at $5 \mathrm{~m} / \mathrm{s}$ [East]. Calculate the momentum of the ghost including the units.
2. [ 2 mark s ] Describe the difference between momentum and inertia.
3. [ 5 marks ] Describe the difference between elastic and inelastic collisions; be thorough.

## Application

4. [ 5 marks ] A 2.5 kg remote controlled car was found to have 900J of kinetic energy. Calculate the momentum of this RC car.
5. [ 5 marks ] A 0.05 kg bullet is fired into a block of wood. The bullet enters the wood at $450 \mathrm{~m} / \mathrm{s}$ and experiences an impulse of -12.5 Ns .
a) Calculate the speed at which the bullet leaves the block.
b) If the block of wood was 30 cm thick, calculate the time the bullet spent travelling through it.

## Thinking, Inquiry \& Problem Solving

6. [ 5 marks ] A 150 kg linebacker on a football team is running at $2 \mathrm{~m} / \mathrm{s}$ towards a receiver. The 85 kg receiver is distracted while carrying the ball and is running at $8 \mathrm{~m} / \mathrm{s}$ directly towards the linebacker. The two collide inelastically during the ensuing tackle. Calculate the final speed of the two players after the collision.
7. [5 marks ] Consider a time variant net force acting on a 5 kg object. The graph of this is given below. If the speed of the object at $t=0 \mathrm{~s}$ was $8 \mathrm{~m} / \mathrm{s}$, calculate the speed of the object at $t=3 \mathrm{~s}$. Use estimation, integral calculus, and/or Wolfram Alpha to solve this problem. Show your work.

8. [ 5 marks ] During a completely elastic collision between to air track carts the following data is collected. The mass of the one cart is 200 g and the other is 600 g . The 200 g cart is travelling at $20 \mathrm{~cm} / \mathrm{s}$ to the right before the collision and $25 \mathrm{~cm} / \mathrm{s}$ to the left after the collision. The initial speed of the 600 g cart was found to be $10 \mathrm{~cm} / \mathrm{s}$ left. Calculate the final speed of the 600 g cart. You can use any method to solve this or multiple to show more of your learning.
9. [ 5 marks ] Two objects slide over a frictionless horizontal surface. The first object, mass $\mathrm{m}_{1}=5 \mathrm{~kg}$, is propelled with speed $\mathrm{v}_{1 i}=4.5 \mathrm{~m} / \mathrm{s}$ toward the second object, mass $\mathrm{m}_{2}=2.5 \mathrm{~kg}$, which is initially at rest. After the collision, both objects have velocities which are directed theta $=30^{\circ}$ on either side of the original line of motion of the first object. What are the final speeds of the two objects?

