\qquad

Mystery Chemicals

Do not taste any of the powders. Goggles must be worn during this investigation. Iodine will cause a permanent stain. Tie back hair and loose clothing around an open flame.

Background Information: Chemists are scientists who study what different chemicals are shaped like, what color they are, how they behave, and how they react with other chemicals. What color or shape a chemical has is called a physical property. How a chemical behaves and how it reacts with other chemicals is called a chemical property. Chemists use both chemical and physical properties to identify and separate different kinds of chemicals.

For some chemists and forensic scientists, the identification and analysis of unknown substances is a daily task. For example, when a law enforcement officer discovers a suspiciously concealed white powder at a crime scene, it is the chemist's job to figure out whether the substance is cocaine, heroin, or just plain old table sugar. Using scientific problem-solving skills, the unknown can be correctly identified in most cases. This is known as qualitative analysis.

Problem: To identify 5 unknown samples of matter by their physical and chemical properties (qualitative analysis).

Materials

5 unknown white chemicals	lodine	Acid droppers
Spot Plate	Beaker with Water	Test tubes
Scoopulas	Eye droppers	Test tube rack
Hot Plate	Foil	

Procedure:

1. Analyze the chemical in the petri dish and record the appearance in column 2 in the observation chart.
2. Measure out 10 mL of water in a small graduated cylinder.

Add this water to a test tube. Using a scoopula, add a small amount of unknown powder. Stopper and shake the test tube. Observe the solubility and record in column 3.
3. Using a scoopula, add a small amount of unknown powder to two separated wells in a spot plate.
4. Use an eyedropper to put 3 drops of acid in the first well. Observe and record observations in column 4.
5. Use a different eyedropper and put 3 drops of iodine solution (stains the skin) in the second well. Observe and record in column 5.
6. Use the foil to make a small boat. Put a small amount of unknown powder in the foil. Turn the hot plate on high (8-10). Put it on the hot plate and wait 1-2 minutes to see if a reaction occurs. Observe and record in column 6.
7. Rinse your spot plate completely and repeat steps 1-6 with each unknown powder. Wash and dry the spot plate between each use. Use a new piece of foil for each powder.
Data:

$\begin{gathered} \text { \#1 } \\ \text { POWDER } \end{gathered}$	\#2 Appearance (colour, crystal form, state)	\#3 Solubility in Water (soluble or insoluble)	\#4 Acid (bubbles/fizz or no reaction)	\#5 lodine (brown or black)	\#6 Heat (describe the reaction or no reaction)
1					
2					
3					
4					
5					

Data Analysis: Use the Properties Chart to compare your observations. Identify each unknown powder:

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad

Questions: (5)

1. What properties did all of the chemicals have in common?
\qquad
\qquad
2. How did you tell the difference between powders 1 and 2 (list minimum 2 properties to distinguish between them)?
\qquad
\qquad
3. How did you tell the difference between powders 3 and 4 (list minimum 2 properties to distinguish between them)?
\qquad
\qquad

Thinking / Inquiry:
/20

