- 16. a) i) $\frac{1}{38955840}$ ii) $\frac{1}{78960960}$ iii) $\frac{1}{146611080}$ b) The probability of cracking the safe decreases
 - as the five different numbers are chosen from a greater range of number.
- 18. The probability that at least two people have the same birthday as you is approximately 0.5687.
- 19. a) not throwing a sum of 7 on consecutive rolls
 - three different letters being arranged in alphabetical order
 - two out of five friends having the same birth month

Extend

- **20.** 3.1664×10^{-7}
- 21. Answers may vary. Any scenario that has n(A) = 1 and $n(S) = {}_{15}P_7$. For example, winning first prize similar to
- 22. a) approximately 0.0947
 - b) approximately 6.9613×10^{-5}
- 23. a) approximately 0.0188
 - b) approximately 0.1004
- **24.** a) approximately 2.2355×10^{-6}
 - b) approximately 0.0026

Chapter 2 Review, pages 96-97

1. 27 possible outcomes

First Die Second Die	1	2	3	4	5	6	7	
1	2	3	4	5	6	7	8	9
2	3	4	5	6	7	8	9	10
3	4	5	6	7	8	9	10	11
4	5	6	7	8	9	10	11	12
5	6	7	. 8	9	10	11	12	13
6	7	8	9	10	11	12	13	14
7	8	9	10	11	12	13	14	15
he sum of 0 soon	9	10	11	12	13	14	15	16

The sum of 9 occurs eight times. There is only one occurrence of the sum 2 and sum 16.

- 3. a) 60 possible outcomes b) (Q, K, A) c) 60
- 4. a) 100 000
- 5. a) 360
- b) 800 000 s, or about 9.3 days
- Ryan has 432 choices to configure his computer. Increasing the number of choices for any option will increase the total number of possible configurations.
- 6. 150
- **7**. 60
- 8. a) and b)

The first term in row n is n. To obtain the remaining terms in row n, multiply all the terms in the row above by n.

- Answers may vary. The last term in row n equals n!. The last two terms in each row are equal.
- 9. 87 091 200
- 10. a) 144 11. 576
- b) 576
- c) 5040

- **13.** a) approximately 2.7557×10^{-7}
 - b) $1-2.7557 \times 10^{-7}$
 - 14. a)

- 15. a) approximately 8.4165×10^{-8}
 - b) $1 8.4165 \times 10^{-8}$

Chapter 2 Test Yourself, pages 98-99

- 2. D
- 3. A **4.** $_{9}P_{10}$ is not defined, n < r.

$${}_{9}P_{10} = \frac{9!}{(9-10)!}$$

$$= \frac{9!}{(-1)!}$$

- 5. a) 24 possible outcomes b) 6
- **6.** 1152 **7.** 95 040 **8.** $\frac{1}{56}$
- 9. a) 40 320
- b) 25 200
- 10. 32 659 200
- 11. a) 3 575 880
- b) 3 156 000 c) 1 806 000
- 12. a) $\frac{1}{456976}$
- b) $\frac{1}{358800}$
- 13. approximately 0.9345
- 14. a) 311 875 200
- b) 158 146 560
- c) approximately 3.6938×10^{-6}
- d) approximately 3.5013×10^{-5}

Chapter 3 Combinations

Prerequisite Skills, pages 102-103

- 1. a) 40 320
- **b)** 60 480
- c) 144
- d) 151 200
- e) 1320 f) 35
- g) 330
- h) 504 504 n! is a product of sequential natural numbers with the form $n! = n(n-1)(n-2) \times ... \times 2 \times 1$.
- The number of permutations of r items from a
- collection of *n* items is written as $_{n}P_{r}$ or P(n, r).

- b) $\frac{100!}{8!}$ c) $\frac{n!}{(n-6)!}$ d) $\frac{15!}{(15-r)!}$ b) 6720 c) 1716
- 4. a) 40 320 5. a) 39 916 800

- - b) 86 400
- 6. a) 40 320
- b) 336
- 7. a) The first and last terms are 1. The remaining terms are the sum of the two adjacent terms in the row

- b) Answers may vary. Consider the top of the triangle row 0. Then, the sum of entries in row n equals 2". The second diagonal contains the counting numbers 1, 2, 3, 4, 5,
- 8. a)
- b) $\frac{1}{8}$
- c) $\frac{1}{8}$
- 9. a) approximately 0.0060 b) approximately 0.2549
 - c) approximately 0.3077
- 10. a)

- d) approximately 1.5619×10^{-16}