Uniform Acceleration – Practice

/14

Name:	Date:
	The Search for the Peanut! Analyze <i>Vector</i> the Elephant's motion as he walks around Physics' Land in search of a tasty <i>peanut</i> treat. His motion is described as follows.
	ts from a speed of 5 m/s and accelerates to a final speed of 20 m/s in 10 seconds. acceleration and the distance he travelled in this time.
	n continues walking for 30 seconds at a constant speed (use the final speed from the as the new initial speed). Calculate the acceleration and the distance travelled in this
-	nat he smells the peanut <i>Vector</i> decelerates at 2 m/s/s down to a speed of 9 m/s. How es this reduction in speed take? Calculate the distance covered in this time.
-	ne was not smelling a peanut, but instead a pair of <i>dirty socks</i> he speeds up again to a n/s in 15 s. Calculate the acceleration and distance travelled in this time.
-	at the new constant speed (from part D) for 5 seconds. What is the acceleration? distance he travelled in this time.
tasty peanut.	nt he sees the peanut! It is exactly 60m away from him. He grinds to a halt and eats his Yay! Calculate his acceleration, average speed and distance travelled during this last part
or the great se	earch. Also, calculate the total distance travelled by vector while searching for the peanut.

Part B: Graphing the Motion and Checking Your Solutions

Go back to your problem and for each section a) through to f) **plot the speed-time (v-t) graph** very neatly and label each section clearly with the letter corresponding to the section. For each section you must calculate **1) the slope** (what does this represent?) and **2) the area** (what does this represent?) - Show your work in the space provided below or very neatly on the graph itself. Compare your results with the results from your mathematical calculations.