Speed of Sound - Problems

Name: \qquad Date: \qquad

$$
v=f \lambda \quad v_{s}=332+0.6 T \quad T=\frac{1}{f} \quad f=\frac{1}{T} \quad \text { Mach } \#=\frac{v_{0}}{v_{s}} \quad c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Show all of your work in your solutions.

1. Calculate the speed of sound in air for the following temperatures:
a) $0^{\circ} \mathrm{C}$
b) $25^{\circ} \mathrm{C}$
c) $-15^{\circ} \mathrm{C}$
2. What is the speed of a plane flying at Mach (convert answers to km / h)
a) 2.1 at $35^{\circ} \mathrm{C}$.
b) 2.1 at $-10^{\circ} \mathrm{C}$
c) 0.5 at $20^{\circ} \mathrm{C}$
3. Calculate the Mach number for a plane flying at:
a) $1300 \mathrm{~km} / \mathrm{h}$ at $25^{\circ} \mathrm{C}$
b) $400 \mathrm{~m} / \mathrm{s}$ at $3^{\circ} \mathrm{C}$
4. The lapse rate of the atmosphere is approximately $-10^{\circ} \mathrm{C}$ per km of altitude. Lapse rate is the decrease in temperature with height above the surface of the ground. A fighter jet plane is flying overhead at an altitude of 15 km at Mach 2.5. Calculate the speed of the plane in km / h if the ground temperature is $23^{\circ} \mathrm{C}$.
5. Calculate the wavelength in the following substances if the frequency is $1000 \mathrm{~s}^{-1}$ and the speed of sound in the medium is given:
a) $\operatorname{Helium}(1230 \mathrm{~m} / \mathrm{s})$
b) Hydrogen ($1267 \mathrm{~m} / \mathrm{s}$)
c) Steel $(5130 \mathrm{~m} / \mathrm{s})$
d) Glass ($4700 \mathrm{~m} / \mathrm{s}$)
6. Calculate the wavelength of the sound produced by a bat if the frequency of the sound is 90 KHz on a night when the air temperature is $22^{\circ} \mathrm{C}$.
7. If it takes 0.8 s for your voice to be heard at a distance of 272 m , calculate the temperature of the air.
8. The air temperature is $20^{\circ} \mathrm{C}$. You are swimming underwater when you hear a boat crash. The sound underwater took 0.5 seconds to reach you from the crash site. If the speed of sound in water is $1450 \mathrm{~m} / \mathrm{s}$, calculate how long after the crash your friend standing on the dock beside you hears the crash?
9. On a hot summer night $\left(32^{\circ} \mathrm{C}\right)$, you are listening to a rock group in a stadium. You are 150 m away from the speakers. Your friend is sitting in an air-conditioned house across the country, listening to the same concert over the internet. If the radio signal travels $30,000 \mathrm{~km}$ up to the satellite and then is retransmitted another $30,000 \mathrm{~km}$ to your friends computer, which person hears the concert first? (radio waves are light and travel at the speed of light).
