Dynamics Evaluation

/25

Name: \qquad Date: \qquad

$$
\begin{array}{ll}
v_{2}=v_{1}+a \Delta t & \Delta d=v_{1} \Delta t+\frac{1}{2} a \Delta t^{2} \quad \Delta d=v_{2} \Delta t-\frac{1}{2} a \Delta t^{2} \quad v_{a v}=\frac{\Delta d}{\Delta t}=\frac{\left(v_{1}+v_{2}\right)}{2} \\
v_{2}^{2}=v_{1}^{2}+2 a \Delta d & \Sigma F=F_{n e t}=m a
\end{array}
$$

You must show all of your work, FBDs and units to get full marks. Put a box around your final answers.

1. [5 marks] Determine the unknown force acting on Matrix the Monkey (5 kg) causing him to accelerated to the left at $1.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.

2. Mighty Mouse $(m=0.243 \mathrm{~kg})$ is being pushed by three forces; 6.1 N [right], 2.5 N [left] and 10.5 N [right].
a) [4 marks] Determine the net force and acceleration of Mighty Mouse. Include a FBD.

b) [4 marks] If Might Mouse was moving at $5.0 \mathrm{~m} / \mathrm{s}$, how far (distance) will he have traveled by the time he reaches a speed of $11.9 \mathrm{~m} / \mathrm{s}$?
c) [2 mark] Determine the size and direction of a $4^{\text {th }}$ force that would cause Might Mouse to stop accelerating. Show your work/Explain your reasoning.
3. [5 marks] The driver of a 900 kg car presses the gas causing a forward force of 1050 N forward on the car. Air resistance exerts a force of 86 N on the car and road friction exerts an additional force of 43 N on the car. If the car was moving at 4.5 m / s initially, calculate the speed it would reach after 5 seconds. Include a FBD.
4. [5 marks] A mini-tank is accelerating at $5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ to the right. State a three force combination and mass of the mini-tank that will result in this acceleration.

