Spring Energy Evaluation

/20

Name: \qquad Date: \qquad COVID-19 2020 \qquad
$F=-k \Delta x$
$E_{S}=\frac{k \Delta x^{2}}{2}$
$E_{g}=m g h$
$E_{k}=\frac{m v^{2}}{2}$

1. [5 marks] A 2.0 kg wooden block is released from a 40 cm high frictionless ramp and slides down the ramp and across a horizontal surface towards a spring. Upon hitting the spring and starting to compress it; it was found that it was moving at $1.3 \mathrm{~m} / \mathrm{s}$ at the point when the spring was compressed by 5.0 cm . Calculate the maximum compression the spring.

2. [5 marks] A toy dart gun with a spring constant of $150 \mathrm{~N} / \mathrm{m}$ is compressed by 3 cm . The dart has a mass of 3 g and is fired at a 15 g smooth plastic block sitting on a frictionless surface. The dart is fired from the gun and sticks to the plastic block. Calculate the speed of the dart-block after the collision.

3. [3 marks] During a workout an athlete uses a "rubber band" system to do a chest expander exercise. The system has three rubber bands in parallel (see diagram). The original length of the bands is 80 cm and each has a k value of 150 N . The athlete stretches them out to 140 cm , calculate the force required to perform this stretch and calculate the energy stored in each band.

4. [3 marks] A 72 kg acrobat stands on a spring loaded platform as a part of a stunt. If the spring under the platform has a spring constant of $1.8 \times 10^{3} \mathrm{~N} / \mathrm{m}$. The spring is compressed by 2.5 m . Calculate the maximum height above the equilibrium position the acrobat flies.

5. [2 marks] The Force vs. Stretch data for a spring is plotted below. Calculate the work required to stretch the spring from 0.2 m to 0.8 m .

6. [2 marks] A 2.0-kg block is dropped from a height of 40 cm onto a spring of spring constant $\mathrm{k}=1960 \mathrm{~N} / \mathrm{m}$ (see figure). Find the maximum distance the spring is compressed.
[hint: you will need the quadratic formula to finish this problem]

