Standing Waves

Closed/Fixed at Both Ends	
$L_n = \frac{n\lambda}{2}$	
0	0
0	0
0	0
0	0
	Closed/Fixed at Both Ends $L_n = \frac{n\lambda}{2}$ O O O O O O

Example: a guitar string is 50 cm long and is vibrating at the third harmonic with a frequency of 550 Hz. Calculate the speed of the wave in the string.

Standing Waves... continued

	Open at Both Ends	
	$L_n = \frac{n\lambda}{2}$	
1 st resonance (fundamental frequency)		
2 nd resonance		
3 rd resonance		
4 th resonance		

Example: an open air column is vibrating at the third resonance length. The column is 25cm long and the air temperature is 28°C. Calculate the frequency of the sound.

Standing Waves...continued

	Closed/Fixed at One End & Open at the Other	
	$(2n-1)\lambda$	
	$L_n = \frac{1}{\Lambda}$	
1 st resonance (fundamental frequency)	0	
2 nd resonance		
	0	
3 rd resonance		
	0	
1 th resonance		
	0	
	i	

Example: a metal rod, fixed at one end, is vibrating at the 2nd harmonic and has a measured wavelength of 20 cm. Calculate the length of the rod. If the rod is vibrating 40 times every 2 seconds calculate the speed of the wave.