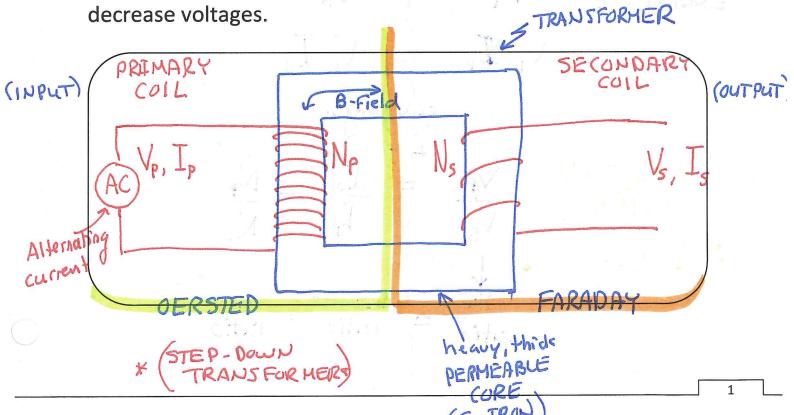
Electricity Review

Electrical Concept	Symbol	Unit
VOLTAGE		V (VOLTS)
CURRENT	I	A (AMPS)
RESISTANCE	R	IZ (OHMS)
POWER	P	W (WATT)

Ohm's Law:

VOLTAGE = CURRENT × RESISTANG


Power:

$$P = VI = I^2R$$

power = voltagex current = current squared x resistance.

Transformers

Transformers are used to change (transform) voltages from one value to another value. They are used to either increase or decrease voltages.

Principle Explanation:

- The alternating current (AC) in the primary coil produces a changing magnetic field around that coil
 [Oersted's Principle]
- The changing magnetic field around the primary coil induces a current in the secondary coil [Faraday's Law]
- ** if the coils have different number of turns in the coils the voltage will be either increased or decreased.

91 = IV=9

Mathematically:

Energy cannot be created or destroyed. So the energy and hence the power in each of the coils must be equal.

Transformer Examples

Name: TEACHER Date: 2013

- 1. A transformer is made to convert 20 V AC to a higher voltage. The current in the primary side was found to be 6 A and on the secondary side it is 2 A.
 - a) Calculate the secondary voltage as well as the secondary number of coils if there are 50 primary coils.

 STEP-UP TRANSFORMER —

$$V_{p} = 20V$$
 $V_{s} = ?$
 $V_{p} = \frac{I_{s}}{I_{p}} = \frac{N_{p}}{N_{s}}$
 $I_{p} = 6A$
 $I_{s} = 2A$
 $\frac{20}{V_{s}} = \frac{2}{G} = \frac{50}{N_{s}}$
 $N_{p} = 50$
 $N_{s} = ?$
 $V_{s} = \frac{20 \times 6}{2}$
 $N_{s} = \frac{50 \times 6}{2}$
 $V_{s} = 60V$
 $N_{s} = 150$

STEP-UP > Vs > Vp and Is < Ip STEP-DOWN > Vs < Up and Is > Ip POWER MUST BE THE SAME !

.: Y is 60V and Ng is 150 based on the current ratio.

b) Calculate the power on both sides as well.

$$P_{p} = P_{s}$$
 $V_{p} I_{p} = V_{s} I_{s}$
 $(20)(6) = (60)(2)$
 $120W = 120W$

THE SAME!

Ip Rp = Is Rs

 $P_p = I_p^2 R_p$ on $P_s - I_s^2 R_s$ $120 N = (6)^2 R_p$ $120 N = (2)^2 R_s$

3.3 R = Re

A Section

primary resistance.

30,52 = R₅

resistance

, .

I A Li James VS W & WARREN

Test and it sive in the second

hours of the state of the state

** **

* /

. . . .

for his tool do - I

1