Uniform Circular Motion

Motion that occurs when an object is moving in a circle with constant speed and a constant radius.

The speed of the object remains constant, as does the radius, but the velocity vector changes direction. The velocity vector is always tangent to the circle.

IMPORTANT - even though the speed is constant the velocity vector is changing direction and thus acceleration is occurring!!

Direction of Centripetal Acceleration

Centripetal acceleration is toward the centre of the circle!
(Centripetal acceleration and the instantaneous velocity are perpendicular to each other.)

Origin of Centripetal:

In Latin

centrum - "centre"
petere - "to seek"

Thus, Newton coined the term Centripetal -"centre-seeking."

Misconceptions: Centripetal vs. Centrifugal

In Latin

Fugal - " to flee"
Thus, centrifugal forces are "centre-fleeing" forces, and are in reality non-existent, but can be a useful tool in calculations.

Magnitude of Centripetal Acceleration

From the derivation, it is thus concluded that,

$$
a_{c}=\frac{v^{2}}{r}
$$

Often the speed of an object is not known, but the radius and period are known. Since the speed is constant and equals the circumference of the circle ($2 \pi r$) divided by the period of revolution, T.

$$
v=\frac{2 \pi r}{T}
$$

It is easily shown that, $a_{C}=\frac{4 \pi^{2} r}{T^{2}}$
And since, $f=\frac{1}{T}$, we can finally conclude that:

$$
a_{C}=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}}=4 \pi^{2} r f^{2}
$$

(Check the units to be sure they are correct and remember that the centripetal acceleration is always toward the centre of the circle!)

