Uniform Circular Motion

Is motion that occurs when an object is moving in a circle with constant speed and a constant radius.

The speed of the object remains constant, as does the radius, but the *velocity vector changes direction*. The velocity vector is always tangent to the circle.

IMPORTANT – even though the speed is constant the velocity vector is changing direction and thus **acceleration is occurring**!!

Direction of Centripetal Acceleration

Centripetal acceleration is toward the centre of the circle!

(Centripetal acceleration and the instantaneous velocity are perpendicular to each other.)

Origin of Centripetal:

<u>In Latin</u> centrum – "centre" petere – "to seek"

Thus, Newton coined the term Centripetal – "centreseeking."

Misconceptions: Centripetal vs. Centrifugal

<u>In Latin</u> Fugal - " to flee"

Thus, centrifugal forces are "centre-fleeing" forces, and are in reality non-existent, but can be a useful tool in calculations.

<u>Magnitude of Centripetal Acceleration</u> From the derivation, it is thus concluded that,

$$a_c = \frac{v^2}{r}$$

Often the speed of an object is not known, but the radius and period are known. Since the speed is constant and equals the circumference of the circle $(2\pi r)$ divided by the period of revolution, *T*.

$$v = \frac{2\pi r}{T}$$

It is easily shown that, $a_{c} = \frac{4\pi^{2}r}{T^{2}}$

And since, $f = \frac{1}{T}$, we can finally conclude that:

$$a_{c} = \frac{v^{2}}{r} = \frac{4\pi^{2}r}{T^{2}} = 4\pi^{2}rf^{2}$$