Work, Energy & Power – Assessment

Name: _____ Date: _____

1. A 65 kg skateboarder accelerates from 12 m/s to 18 m/s. Calculate the amount of work done on the skateboarder.

2. A 1200kg car has a force acting on it resulting in an acceleration. The car's final speed was found to be 32m/s after 2,000,000J of work was done on it. Calculate the initial speed of the car.

3. A cat is lifted from a position of 0.23m above the ground to a new height of 3.40m. It took 210J of work to do the lifting. Calculate the mass of the cat.

4. The height between floors in a building is approximately 3 metres. A 85kg firefighter carries himself from the ground floor to the 5th floor. Calculate the work done by the firefighter. The firefighter now walks to the 1st basement level (one floor below the ground floor). Calculate the work done by the firefighter in this case.

5. An object undergoes a series of accelerations caused by an external force. 4000J of work is done on the object. Then an opposing force of 150N acts over a distance of 25 m. Then another 2000 J of work is done on the object. The final speed was found to be 23m/s, which was double the initial speed. Calculate the mass of the object.

6. A 5000kg meteor flies into the Earth's atmosphere at 4589 m/s and is at an altitude of 50km above the surface of the Earth. Assuming no air resistance, calculate the speed at impact. [Note the gravitational energy at 50km is added to the kinetic energy at that altitude and then all of that energy is converted into kinetic energy.