Work \& Kinetic Energy - "A Tale of two Methods"

A 400 kg clown car is travelling at $5 \mathrm{~m} / \mathrm{s}$ when the clown pushes the accelerator which causes the engine to apply an unbalanced force of 500 N on the car which accelerates the car over a distance of 30 m . Calculate the final speed of the car.

Method 1 : Newton's Laws \& Kinematics
Method 2: Work-Energy Theorem

Work-Energy Theorem

Consider now the situation where the clown car undergoes a series of accelerations and decelerations. Calculate the final speed of the clown car if the following work is done on the car by the engine and via braking or friction.

Q: A 400 kg clown car starts from rest and 100 J of work is done by the engine to accelerate it. At that point another 50 J of work is done by the engine to speed it up. The clown then presses the brakes (frictional braking) which does 120 J of work on the car. At this point the clown presses the gas peddle once again which causes the engine to exert a force of 20 N over a distance of 40 m . Calculate the final velocity of the car at this time? Also, why is the work-energy theorem a much "nicer" way of solving this problem rather than using Newton's laws and kinematics?

